Black Winter Day
Member
to please tee, i will now discuss the paradoxes of zeno of elea, philosopher and physicist:
"If a thing moves from one point in space to another, it must first traverse half the distance. Before it can do that, it must traverse a half of the half, and so on ad infinitum. It must, therefore, pass through an infinite number of points, and that is impossible in a finite time.
In a race in which the tortoise has a head start, the swifter-running Achilles can never overtake the tortoise. Before he comes up to the point at which the tortoise started, the tortoise will have got a little way, and so on ad infinitum.
The flying arrow is at rest. At any given moment it is in a space equal to its own length, and therefore is at rest at that moment. So, it's at rest at all moments. The sum of an infinite number of these positions of rest is not a motion.
Suppose there are three arrows. Arrow B is at rest. Suppose A moves to the right past B, and C moves to the left past B, at the same rate. Then A will move past C at twice the rate. This doubling would be contradictory if we were to assume that time and space are atomistic. To see the contradiction, consider this position as the chains of atoms pass each other:
A1 A2 A3 ==>
B1 B2 B3
C1 C2 C3 <==
Atom A1 is now lined up with C1, but an instant ago A3 was lined up with C1, and A1 was still two positions from C1. In that one unit of time, A2 must have passed C1 and lined up with C2. How did A2 have time for two different events (namely, passing C1 and lining up with C2) if it had only one unit of time available? It takes time to have an event, doesn't it?"
"If a thing moves from one point in space to another, it must first traverse half the distance. Before it can do that, it must traverse a half of the half, and so on ad infinitum. It must, therefore, pass through an infinite number of points, and that is impossible in a finite time.
In a race in which the tortoise has a head start, the swifter-running Achilles can never overtake the tortoise. Before he comes up to the point at which the tortoise started, the tortoise will have got a little way, and so on ad infinitum.
The flying arrow is at rest. At any given moment it is in a space equal to its own length, and therefore is at rest at that moment. So, it's at rest at all moments. The sum of an infinite number of these positions of rest is not a motion.
Suppose there are three arrows. Arrow B is at rest. Suppose A moves to the right past B, and C moves to the left past B, at the same rate. Then A will move past C at twice the rate. This doubling would be contradictory if we were to assume that time and space are atomistic. To see the contradiction, consider this position as the chains of atoms pass each other:
A1 A2 A3 ==>
B1 B2 B3
C1 C2 C3 <==
Atom A1 is now lined up with C1, but an instant ago A3 was lined up with C1, and A1 was still two positions from C1. In that one unit of time, A2 must have passed C1 and lined up with C2. How did A2 have time for two different events (namely, passing C1 and lining up with C2) if it had only one unit of time available? It takes time to have an event, doesn't it?"